
Plant Physiol. (1975) 56, 680-683

A Mathematical Treatment of Rate Data Obtained in Biological
Flow Systems under Nonsteady State Conditions

Received for publication March 11, 1975 and in revised form June 25, 1975

DENNIS S. MARYNICK
Department of Chemistry, University of California, Berkeley, California 94720

MARILYN C. MARYNICK
Department of Botany, University of California, Davis, California 95616

ABSTRACT

The problem of determining gas exchange rates from
flow system data under nonsteady state conditions is ana-
lyzed. A correction factor is presenlted for obtaining con-
stant rates under nonsteady state conditions. A general
formula for obtaining any rate under nonsteady state con-
ditions is also given. Turnover time is defined and discussed
in terms of the mathematics presented. The origins of non-
steady states and steady states in flow systems are discussed,
as are some of the experimental advantages of working un-
der nonsteadv state conditions.

The study of gas exchange of plants and plant parts has been
largely conducted by postharvest physiologists studying fruit
respiration and by biochemists, ecologists, and physiologists
studying photosynthesis. There have been and are many similari-
ties in the gasometric methods used by these various researchers.
The use of flow systems is one case in point.

In a flow system, tissue is enclosed in a container and air or a
modified atmosphere is passed through the container at a known
rate. One of the principal advantages of a flow system over the
older manometric and volumetric techniques is the ability to
closely control the composition of the atmosphere surrounding
the tissue. Volume, pressure, flow rate, and usually temperature
are constant, and changes in the composition of the gas stream
with time are related to the activities of the living tissue. Sum-
maries of the methods for monitoring such changes along with
much practical advice and standard operating procedures for
some types of flow systems are available (1, 14).

Surprisingly, the mathematics of rate calculations in flow sys-
tems has received only passing attention in the biological litera-
ture even though the problem is not difficult. The formula usually
quoted (1-5, 8, 10-14, 16) for determining the rate R, given the
flow rate F and the gas concentration %C, (v/v) corrected for
background, is

R = %C.F/100 (1)
This formula is sometimes accompanied by the caveat that it is
valid only under steady state conditions, but sometimes this re-
quirement is not made clear.

In this paper we will be concerned with three basic questions:
(a) When does equation 1 apply? (b) When equation 1 does not
apply what is the appropriate mathematical framework to deal

with the experimental data? (c) What are the potential experi-
mental advantages in using this general solution?

EXPERIMENTAL

The flow system used to obtain the experimental data presented
in this paper was assembled in a 30 C room. The cotton explant
of the standard abscission bioassay was the subject under in-
vestigation. Explants prepared in the standard fashion (15) were
placed in chambers through which CO2- and ETH'-free air flowed.
Explant chambers were wrapped with foil to exclude light. After
the insertion of the explants, the chambers were immediately
flushed with a rapid stream of the desired atmosphere. The time
at which the experimental flow rate was established was taken as
the beginning point (t = 0) for the rate data. At t = 0 the amount
of CO2 and ETH present equalled zero to the precision of our in-
strumentation. The time between explant cutting and t = 0 was
minimized. Gas samples were withdrawn from the chambers with
hypodermic syringes for chromatographic determination of CO2
and ETH concentrations. The CO2 concentrations determined in
these experiments were between 0.05 and 0.5%, whereas the ETH
determinations were between 2 and 70 nl/l. The maximum error
in any measurement is estimated to be 10%; however, the great
majority of measurements are accurate to within 3 to 6%.

This flow system was primarily designed to allow measure-
ments of instantaneous rates of CO2 and ETH production at any
point during the abscission process. The need to have the explants
free standing, far enough apart for individual treatment, and
easily and rapidly accessible for testing or treatment necessitated
a relatively large free volume in the chambers. Volumes
ranged from 110 to 120 ml in these experiments. The amount of
tissue involved was small (twenty explants averaging 1.45 g in
total weight) and detection of even a relatively high rate of gas
production by this amount of tissue would require a slow flow
rate. A maximum flow rate of only 60 ml/hr could be used to
detect and measure the lowest critical rates in this system. Large
free volume and slow flow rates make this system ideal for the
application of nonsteady state techniques (see below).

NONSTEADY STATE MATHEMATICS

Steady state conditions in a flow system are defined as

d%C = 0
dt (2)

and are illustrated for respiration by the horizontal portion of the

1 Abbreviations: ETH: ethylene; t: time; IRGA: infrared gas
analyzer.
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FIG. 1. A constant rate of respiration measured in a flow system. The zero of time corresponds to to. The approach to steady state is clearly
seen in the CO2 concentration plot versus time. The rates of respiration plotted were calculated using equation 5 (see also Table I). Twenty stand-
ard cotton explants (1.5 g) were used with V = 118 ml and F = 49.3 ml/hr. The temperature was 30 C. The experiment was terminated after 21
hr when the rate was still constant to within experimental error.

%C02 versus time curve (Fig. 1). It is only in this portion of the
curve that equation 1 is valid.

In this case, in which respiration is constant, one can wait for
steady state; however, data such as wound ETH production can,
in practice, be obtained in a flow system such as ours only under
nonsteady state conditions (Fig. 2). To obtain instantaneous rates
of gas exchange under nonsteady state conditions we will consider
the differential equation applicable to the type of flow system de-
scribed above.

dCt) =C(t) F _C(t)-F
= R(t) R(t) (3)

dt ~100 V

where C(t) is the amount and %C(t) is the concentration of the
gas under consideration in the chamber at time t, R(t) is the net
rate of gas exchange at time t, and V is the free volume of the
chamber. This equation merely states that the net rate of change
of gas in the chamber [dC(t)/dt] is equal to the rate in [R(t)]
minus the rate out [C(t) FyV]. If R(t) is constant, this equation
is easily solved (6) to yield

R [%C(&) %Co.e-FIVt].F 1 1
100 L(1 - e-FIV.t)_

(4)

where the general boundary conditions are taken as %C = %7,Co
at t = 0 (after correction for background). Should the boundary
conditions %C = 0 at t = 0 be applicable, then equation 4
simplifies to

%C(t)-F 1 1

100R(1=
100 L(1 e-F,V1--t)j (5)

The term in brackets may be considered to be a correction factor
[y] for nonsteady state conditions. At large t, the correction factor
approaches unity and equations 4 and 5 reduce to the steady
state equation 1. Also, the time to steady state is decreased with
increasing flow rate or decreasing free volume and %C at steady
state is independent of V. Figure 1 and Table I illustrate the appli-

cation of equation 5. We note that it is possible to obtain re-

markably accurate values ofR at times which are very short cbm-
pared to the time the system needs to reach approximate steady
state conditions.

If R(t) is not constant then there is no general analytic solution
to equation 3, but numerical solutions may be easily obtained by
noting that d%C/dt is simply the slope of a concentration versus
time plot (Figs. 1 and 2). This slope is obtained numerically by
quadratic approximation. A small region of the concentration
curve defined by %C1, %C2, %C3, tl, t2, and t3 is approximated
by %C(t) = at2 + bt + c, where t1 < t2 < t3 and ti < t <
t3, the constants a and b are solved for exactly, and the derivative
d%C(t),dt = 2at + b is calculated and used in equation 3. The
general solution for variable R then becomes

V/1OO[%C(tD - (t2 - t3)2 + %C(t2)
- (ti(t, - 2t2) - t3(13 - 212)) - %C(t3) * (tl t2)2]

t12(t2 - t3) - t22(tf - t3) + t32(t, - t2) (6)
%C(t2) .F

100

where the rate R(t2) is always calculated at the time point lying
between t1 and t3 and the points are close enough together in time
for the quadratic approximation to be valid. When possible, the
points should be at equal time intervals A, and then equation 6
reduces to

R(12 =
V %C(t3) C(t,) + %C(t2)1-F

200 A 0 (7)

This formula could be especially useful in conjunction with con-
tinuous monitoring devices, when it is possible to obtain concen-
trations for any time. Figure 2 illustrates the application of
equation 6 for wound ETH data. It should be noted that the
rate peaks before the concentration peaks. This is a general
characteristic of all open flow systems.

<~~~~CO2 concentration

/ respiration rate

_/
G/

II ,
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FIG. 2. An example of the application of the general forn
varying rate of ETH production measured in a flow system. T1
of time corresponds to the cutting time of the explants. Steady
never obtained since the rate of ETH production approach4
(data are available for 60 hr but not shown). The rates of ETH X
tion here have been calculated from equation 6. Twenty st

cotton explants (1.4 g) were used with V = 120 ml and F = 5
hr. The temperature was 30 C.

TURNOVER TIME

If we define the turnover time T as the time needed for
ume of gas equal to the volume of the chamber to pass ti
the system, then T = V/F. It is of interest to know what pi
age of the gas originally in the chamber remains after oni

over [%G(t)]. The general form of the relevant differential
tion is that of equation 3 with R(t) = 0. The solution is

%G(t) = 100 e-FIV.t

4 to 7 are instantaneous in the precise mathematical definition of
the word. They are by no means average rates.

7 The mathematics presented here are generally valid for all open
flow systems for which instantaneous mixing is a good approxi-
mation. It is important to note that our mathematical treatment
deals with gas concentrations in the chamber. If there were any

6 significant length of tubing connecting the chamber to the site of
sampling (as is common when IRGA instruments are used) the
approximation of instantaneous mixing would not be valid and

W our mathematical treatment would not necessarily apply. The
5 sampling, as well as the mathematics, must reflect the instantane-

.5 ous situation in the chamber.
z Errors implicit in nonsteady state rate calculations are princi-
E pally errors in gas and time measurements. The effects of these

4 errors are most easily discussed in terms of the constant R equa-

X tion 5. It is clear from this equation that errors in R are directly
z proportional to errors in %C. It is a simple matter to minimize
> these errors by using equations 4 or 5 only when %C is known to

3 W the desired accuracy. Errors in time are potentially more trouble-
B some, since the nonsteady state correction factor depends expo-

3 nentially on time. If t = 0 is defined as the point at which the flow
0 starts, a small uncertainty in time is possible. This could give rise

2 *E to large errors in 'y for times near t = 0 (although we certainly do
9 not observe them in our system). In any case, this error can be

virtually eliminated by defining t = 0 with a gas measurement
%Co and using equation 4. The general solution essentially takes

1
care of this potential problem automatically by requiring three
measurements. Other types of errors inherent in flow systems
have been discussed previously (3, 4, 9). Depending on the ac-

curacy of the available measuring equipment, we believe that non-

0
steady state techniques will allow accurate measurements of rates

Table I. A Comparison of Two Methods of Calculating Rates
The CO2 concentration data of Figure 1 are presented in tabular

nula: a form. The correction factors for the constant R formulae (equa-
he zero tions 4 and 5) are shown as are the results of using equation 1 on

state is this data. The rates calculated using equation 5 are compared to
es zero those calculated using the general formula (equation 6). The aver-

p,rduIc age rates obtained from both equations are in excellent agreement.
6.3 ml/

a vol-
hrough
ercent-
e turn-
I equa-

(8)

After one turnover we obtain %G = 100e-' = 36.79%. After
two turnovers %G = 13.53, and so on. Steady state conditions
are approximated after three turnovers, when %G = 5.00 and
'y, the nonsteady state correction factor for the constant R cases
equals 1.05.

DISCUSSION

While more sophisticated techniques for obtaining numerical
first derivatives exist (7) and could easily be used, they are not
necessary here. In addition, the quadratic approximation allows
us to write an explicit formula for the rate, given three points,
while more sophisticated approximations would not provide such
a simple algebraic expression. Rates calculated using equations

%CO, Time %C02K.| 2 R3 R4

hr mg C02/g tissue -hr

o 0
0.048 0.22 0.028 11.387 0.320 0.327
0.100 0.47 0.058 5.609 0.328 0.305
0.137 0.73 0.080 3.804 0.305 0.275
0.167 0.95 0.098 3.052 0.298 0.296
0.239 1.42 0.140 2.235 0.312 0.325
0.298 1.97 0.174 1.783 0.311 0.308
0.335 2.40 0.196 1.580 0.310 0.324
0.384 2.90 0.225 1.424 0.320 0.343
0.421 3.43 0.246 1.313 0.323 0.323
0.440 3.88 0.257 1.246 0.321 0.308
0.456 4.47 0.267 1.183 0.316 0.300
0.475 6.88 0.278 1.060 0.294

0.313 avg 0.312 avg

1 Rates calculated from equation 1, K = F(ml/hr) * (mg/ml
CO2 at 30 C)/100-tissue weight (g) = 0.585 mg C02/g.hr for these
data.

2 -y is the nonsteady state correction factor for the constant R
case.

3 Rates calculated from equation 5 (product ofcolumns 3 and 4);
standard deviation = 0.010, 3.2% error.

4 Rates calculated from equation 6; standard deviation =
0.019, 6.1% error.
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from two to twenty times faster than the usual steady state pro-
cedures.
Nonsteady state techniques are useful whenever a large free

volume or a slow flow rate, or both, is either unavoidable or de-
sirable, or when speed in obtaining data is critical. Whenever a
rate to be measured in a flow system is rapidly changing relative
to the time needed to obtain steady state, nonsteady state tech-
niques are essential. In other cases where work under steady state
is practical, the elimination of the wait for steady state with use
of nonsteady state rate calculations could result in a significant
saving of time.
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